

A Schema-based XML Database Storageadapter

Claus P. Priese

Datenbanken und Informationssysteme
FB15, Institut für Informatik

J.W.G. Universität Frankfurt/Main
Robert-Meyer-Str. 11-15
D-60486 Frankfurt/Main

priese@dbis.informatik.uni-frankfurt.de
and cspriese@gmx.de

Abstract: After a short motivation within this paper a concise view on the basic
concepts of XML-Schema, the Java architecture for XML Binding, Java Data
Objects, the Universal Free Object-Relational DataBase adapter and the idea of a
conceptual Object-Relational Schema is given. After this, persistency concerns for
XML data are threatened in general. Then a mathematical well-founded mapping
between graphs representing XML-Schema components and OR-Schema
components is given by defining a graph-isomorphism. Finally the extended UFX-
RDB adapter architecture and interfaces are depicted in short.

1 Introduction

Today`s choice for building innovative new informationsystems and the integration of
existing destributed softwarecomponents appear to be webservices. Webservices provide
a standardized technical plattform for establishing asynchronous interoperation and
coupling of distributed parts of software, possibly over the worldwide web. Moreover
dependend on the targeted application-domain of an informationsystem different system-
design methodologies and achitectural alternatives may appear rational or approriate.
This means webservices can be interconnected for example according to workflow-
processdefinitions, by using semantic informations located somewhere in the web or by
any other arbitrary composition-paradigm.
In all cases data is processed. System-metadata for running the informationsystem itself
properly and user-/applicationdata “inside” the systems to fulfill the intended
application-purpose. Even for the communication between distributed softwareparts (the
services) data (the messages) is exchanged over networks.
Common chacteristics of various kind of data are the use of an appropriate encoding-
language and usually the appearance in conjunction with structural descriptions. Further
non-volatile data should be stored in a database-system for save and durable persistence
and accessability.
Not only, but also in the context of webservices the data-encoding-language and the
structural description language of choice is the extensible markup language (XML)
[XML00] and XML-Schema [XSD-P0-01], [XSD-P1-01], [XSD-P2-01].

Therefore in this paper the universal free XML to relational database storage adapter
(UFX-RDB) is introduced in section 7. But in front of doing so a short review of the
related and required technologies and specifications is given. This is done to enable the
reader to understand the relationships, ideas and concepts as used in the UFX-RDB
adapter. Further to recognize the neccessity and thus appraise the work done with the
UFX-RDB adapter.

2 XML and XML-Schema

As mentioned above data is encoded with an encoding language and usually appears in
conjunction with structural descriptions. The encoding language used here is XML and
the language used for the structural descripiton is XML-Schema. Therefore in this
context XML-Schema is a meta-language for describing the grammar and vocabulary of
another language. For example the widley know HyperTextMarkupLanguage (HTML)
could be specified within one XML-Schema. The same is true for any other XML-
Language. And because HTML and any other XML-Languages are itself markup-
languages XML-Schema is moreover a meta-markuplanguage because it is a language
for defining other markup-languages and is also decribing the structure and content of a
class of XML-Documents. Futher it may be of interrest to be mentioned that XML-
Schema itself is defined in XML instead of using an own language as done with
DocumentTypeDefinitions (DTD). Therefore any XML-Schema always is a valid XML
document with a cyclic-free1 tree-structure. The schema-for-schemas is specified in
[XSD-P1-01].
The development and introduction of XML-Schema was also caused by the poor data-
typing- and data-encapsulation-capabilities of the predecessor XML in conjunction with
DTDs. The main improvements of XML-Schema are:

- a rich set of primitive datatypes including all usual types and the additional

possibility to specify the domain of types
- definition of complex elementtypes by composition of existing primitive and other

complex types
- explicit grouping mechanism for attributes and elements
- definition of new elementtypes on basis of existing ones (inheritance) with

extension and restriction mechanisms
- support for namespaces

Through the use of namespaces a XML-Schema can contain elements definded in other
XML-Schemata or can contain different elements with identical name inside one XML-
Schema if they exists in different namespaces. By this the use of namespaces supports
rational reuse and data-encapsulation as known simmilar from object-oriented
programming languages. For an short introduction into XML namespaces see [Bi01]
pp.106-118 .

1 In a preliminary version of the XML-Schema specification there was a specification-gap allowing
unintentionally cycles with XML-Schemata. The former master thesis student A.A.Baker and the author of this
paper therefore made a corresponding hint to the XML-Schema standardization group to close this gap.

Now follows a concise look on selected details of the relevant parts of the XML-Schema
specification as need for section 3, 6 and 7.
Any XML-Schema is constructed of up to twelve components/blocks that make up the
the abstract data model of the schema. According to [Bi01] they can be split in three
groups which appear to be choosen well and are therefore adopted here:

- Primary components: element and attribute declarations, simple type and complex

type definitions
- Secondary components: attribute groups, identity constraints, model group

definitions and notation declarations
- Helper components: these are different form the first two, because they cannot be

named or independently accessed

The basic building blocks of any XML document are elements and it`s attributes.
Therefore declarations of elements with attributes are also the basic components for
XML-Schema. While gobal elements are declare within the outermoust schema-element
of an XML-Schema local ones are declared inside a complex type or element group. The
name and type of an element is specified in attributes. Therefore the basic function of an
element declaration is the association of its name with a type. A simple example could
look like :

 <xsd:element name=”amount” type=”xsd:float” />

If no type-attribute is specified the default type string is used. The prefix xsd: indicates
that element and the typename float come from the W3C XML-Schema namespace
which is declared in the root element of an XML schema (<xsd:schema xmlns:xsd=...>).
Elements further can contain the attributes minOccurs and maxOccurs not explained in
more detail here. Another property of elements is, that they can be subject of substitution
with a substitution group. If substitution is used all participants have to be declared
globally. Then the substitution group needs to be as of the same type as the replaced
element or of a derived type of them. Substitution is transitive but not reflexive.

As primary components, beside elements and attributes, there are two kinds of
typedefinitions in the XML-Schema language: primitive type definition and complex
type definitions. As expected, the differnce is, that only complex type definitions can
contain child elements in their definition while simple types can not. According to this
two kinds of types there exist two root-types anySimpleType and anyType for inheritance
by extension or restriction.
The XML-Schema specification contains 45 built-in data-types (20 primitive and 25
standardized derived types) which can be used as basis for the definition of user specific
simple types. Simple types are defined bye using the simpleType-Element and one of
three methods available for creating user defining simple types: atomic with restrictions,
list-creation and union`s. An example for a list-type is:

 <xsd:simpleType name=”listofnumbers” >

<xsd:list itemType=”xsd:integer”/>
 </xsd:simpleType>

In XML-Schema complex types are the means for building content models by adding
child-elements and attributes to complex type definitions. A simple example for a
complex type definition is:

 <xsd:complexType name=”size”>

<xsd:sequence>
<xsd:element name=”height” type=”xsd:float” />
<xsd:element name=”width” type=”xsd:float” />

</xsd:sequence>
 </xsd:complexType>

A complex type definition may contain one of three compositors anonymously(i.e.
without explicit naming of the compositor-structure) or a reference to a gobally defined
named group containing one compositor. The tree available compositors are: all, choice
and sequence. The use of groups is usefull in cases where the same group of elements is
needed in different places. The compositors itself can contain elements of primitive or
again complex type. Exactly this is the mechanism used for building content models.

Beside elements also attributes can be defined in global groups for identical use in
multiple types.

All three identity components provided from the XML-Schema language (ID, IDREF
and key/keyref) does NOT match directly with the XML persistent document identity
mechanism used in UFX-RDB and described in a later section. Therefore their exsitance
is mentioned only here. A description of this identity-constructs takes at least 2 pages.
See [Bi01] p. 216-218 if interrested in more details.

Further the possibility needs to be metioned to embed a complete XML-Schema into
another by means of the include-directive, or embed parts of another XML-Schema by
means of the import- or redefine-directives. The include-directive is used in the UFX-
RDB adapter for the important task of importing an identity-sturcture XML-Schema.

Even if not all available constructs of the XML-Schema specification could be covered,
it should be enough to comprehend the meaning of the following sections.

3 The Java Architecture for XML Binding (JAXB)

Webservices and related informationsystem design rationals are not the topic of this
paper but they are the intended application-environment to be used with the Java
Architecture for XML Binding2[JAX02]. Therefore it is neccessary to be at least aware
of it also for our aimed XML persistency mechanism. The thight integration with

2 Do not mistake the JAXB for the Java API for XML processing (JAXP)! These are different specifications!
JAXB is something new, different from the older JAXP.

webservices can also be seen from the fact that Sun bundles the JAXB now with its latest
Java Webservice Deveolper Pack (1.1)3.

The JAXB specification standardize how to access and use a XML document (a file
containing XML-tagged data) using the Java programming language, without
considering any persistency requirements. But JAXB is aware of XML-Schema as the
structural description language for the data contained in XML documents.
Moreover JAXB introduces a new API for reading, writing and manipulating of XML
documents by means of the Java programming language while avoiding the tedious and
error-prone use of the lowlevel SAX parser API or the somewhat higher-level
DOM parse-tree API.

The Binding Framework

In general the JAXB specification maps the components of an XML document to
in-memory objects instanciated from specifically created java-classes. JAXB
uses the expressions of Unmarshalling, which means the process of reading an
XML document and constructing a tree of content objects, Marshalling, which is
the inverse of unmarshalling and Validation, which means the process of
verifying that all constraints expressed in the source schema hold for a given
content tree.

But prior to execution of any un-/marshalling or validation by the JAXB binding
framework, the framework needs to know how to do this for any XML-Schema.
Therefore always a binding compiler must be used to “bind” a XML-Schema to a set
of content Java language constructs (i.e. interfaces+classes). This binding is described by
a JAXB binding language, enabling also additional customization of this mapping where
required. The interconnection of the mentioned parts can be seen from picture 1 below.

picture 1 – JAXB roundtrip overview

3 WSDK can be downloaded fom Sun`s website http://java.sun.com

The JAXB specification introduces two new java-packages containing application
programming interfaces and classes representing the JAXB. Implementations of the
JAXB must fulfill these interfaces.

The JAXBContext class provides the client's entry point to the JAXB API. It holds
references to the XML/Java binding information necessary for managing it and contains
methods for the creation of instances of the interfaces Marshaller, Unmarshaller and
Validator.
The interfaces metioned until now suggests how the content of an exsting XML
document can be filled into a properly created tree of Java object instances. But it does
not suggest how the opposite direction works. In fact a Java-application can create an
XML document in two ways using a JAXB implementation:
The first alternative is that the application itself creates a tree of Java objects by
instanciation from these Java classes previously generated from the binding compiler for
a XML-Schema and afterwards pass this object-tree (representing the document) to an
implementation of Marshaller interface.
The second, and for our purpose more important alternative, is the use of a factory
mechanism. Each binding generated for a XML-Schema from the binding compiler
contains a class ObjectFactory. This Factory class contains methods to generate objects
for each of the schema-derived interfaces and classes. This means that any application
can use a standardized mechanism using the constant ObjectFactory class instead of
instanciating java objects itself from always different java classes derived from the
actually used XML-Schema for the actual application.

JAXB concepts for XML to Java mapping

The Java Architecture for XML Binding separates the conceptual mapping from
implementations by the use of java interfaces. The components of XML-Schema are
mapped to java interfaces making up the content-model. Its a matter of a JAXB
implementation to provide/generate implementing classes fulfilling these interfaces. We
will see that this especially usefull for our aims to store the data contained persistent.

Now follows a concise look on the basic mappings from the basic parts of the XML-
Schema to a Java representation as specified by the JAXP.

Spoken simple, the output of a JAXB binding compilers run is a Java package
representing the XML-Schema. The name of the package ist either derived directly from
the XML namespace URI, or specified by a binding customization. The package is at
least made up of a set of Java content interfaces, a set of Java element interfaces and an
ObjectFactory class. While the content interfaces represent the content model(i.e.
complex types) declare in the XML-Schema, the element interfaces represent the
elements declared in the XML-Schema.

Simple types and attributes either of a type or an element when declare in a XML-
Schema are mapped to java properties (i.e. attributefields) in content or element

interfaces. This is always done in conjunction with a set of access functions (i.e.
setter/getter methods).
As specified [JAX02] several property models can be used to represent the different
simple types possible in a XML-Schema.
All java properties must have a base type, which may be a Java primitive type (e.g., int)
or a reference type according to the XML-Schema built in type or user derived type
within the considered XML-Schema.
On the lowermost level JAXB specifies how the 45 XML-Schema built in data-types are
mapped to primitive Java types. For example xsd:string is mapped to java.lang.String,
xsd:integer is mapped to java.math.BigInteger, xsd:int is mapped to int, xsd.long is
mapped to long ... see [JAX02] section 5.2.2 Atomic Datatypes.

Further, the JAXB specifications says a model(type) group definition is not bound to a
Java content interface. Rather, when a named model group is referenced, the JAXB
property set representing its content model is aggregated into the Java content interface
representating the complex type definition that referenced the named model group
definition.
Also attribute groups are spread the same way. As referenced, each attribute in the
attribute group definition becomes a part of the referencing complex type definition.

4 Java Data Objects (JDO)

The Java Data Objects specification [JDO02] standardize a pure object-oriented database
access mechanism and it`s embedding in the Java-Programming-Environment.4
The JDO specification does contain several parts describing neccessary aspects of an
object-oriented database integration into Java. In this section we will concentrate on the
fundamental aspects required for understanding the corresponding parts of the database
adapters proposed in section 5.

Object Model, JDO Identity and Object States

The JDO specification distinguishes transient java programming language objects from
persistent capable objects. The used object model split the set of persistent capable
objects into two subsets. First Class Objects (FCS) and Second Class Objects (SCO).
The main difference is, that first class objects possess a persistent object identity (POID),
while second class objects does not. SCO`s doesn`t have own POID`s because they are
always part of another FCS as attributes or in the inheritance-hierarcy.
Persistent object identity differs from the in memory volatile object instance identity
which is assigned from the Java Virtual Machine at runtime. JDO specifies three
alternatives for persistent object identity (POID): application identity, data store identity
and nondurable identity. The default object identity mechanism used in the UFO-RDB
adapter described in section 5 corrensponds to JDO data store identity. Which means, the

4 JDO seems to be inspired by the ObjectDatabaseManagementGroup`s (ODMG) Object Database Standard3.0
with specialized Java-binding

POID is managed by the used data store without being tied to any field values of a JDO
persistent capable object instance.
Persistent capable objects can be in one of the following states, according to their actual
livecycle-phasis. Required states are transient, persistent-new, persistent-dirty, hollow,
persistent-clean, persistent-deleted and persistent-new-deleted. Optional are the states
nontransactional, persistent-nontransactional, transient-transactional, transient-clean, and
transient-dirty. A detailed description of the meaning of this states is given in the JDO
specification [JDO02] section 5.5 to 5.8 and is therefore omitted here.

Class Enhancer

Before being able to store instances of java classes in a persistent storage the JDO
specification requires that the classes are enhanced. Enhancement means adding of
attributes and code to enable the persistency mechanism to correctly manage the
instances and it`s data content. There is (intentional) nothing said in the JDO
specification about how this enhancement needs to be done. Therefore all possiblilities
are available: source code extension, java-bytecode modification or perhpas a
sophisticated on the fly modificication of instances on runtime whenever needed. While
the first alternative would be the most trivial to implement it isn`t an elegant choice
because of it`s code-intrusion visible also for the application programmer. Therefore the
seconde approach of a java bytecode enhancer is choosen as the primary on in the UFO-
RDB adapter of section 5.

Interfaces and their interconnection

An important part of the JDO specification is the introduction of a set of application
programming interfaces accompanied with a description of their meaning.
The interface PersistenceCapable is the one which java classes whose object instances
are intended to be stored in a persistent data store needs to implement. The
implementation for this interface is added to java classes usually by the class enhancer
and consists mainly of fields and generic methods for data content management.
The interface StateManager is “the other end” during runtime. This means an
implementation of StateManager interacts with persistent capable object instances during
runtime through the specified interface methods to manage the data content and object
state correctly.
Before being able to manage a persistence capable object instance at runtime it has to be
created or read form the underlying persistency mechanism. This is the task of an
implementation of interface PersistenceManager. A PersistenceManager encapsulates
the details of connection(s) to the used underlying enterprise information system (EIS),
which can be directly a database management system or an even more complex
persistent storage mechanism. To fulfill this tasks a PersistentManager implementation
uses a vendor specific so called ResourceAdapter to create, store, retrieve, update or
delete data objects in the underlying EIS. After doing this it passes the further handling
of created JDO`s to StateManagers for runtime management.
PersistenceManager`s itself are created form implentations of the interface
PersistenceManagerFactory. This factories contains or reads in from local configuration

files or retrieve from other resources informations about framework details like exact
hosts and ports to use and which additional librarys to use etc.
Other interfaces found in the JDO specification are omitted here because of it`s weaker
importance for the subject of this paper.

5 The UF O-R DataBase adapter

The UFO-RDB adapter, first introduced in [Pr99] and described more detailed in [Pr00],
is an universal and highy customizable object-relational storage architecture framework
for orthogonally object persistence [AM95] on the Java plattform. It does support the
storage and retrieval of object-data by allowing Java applications to be programmed
against a pure object-oriented API while using an arbitrary storage mechanism on the
bottom. For example a JDBC-Driver5 for the connection to a relational style database
management system. For more details on the relational database model see [Co90].

Due to [Pr00] and [Pr99] already contains a description of the basic UFO-RDB
architecture layers only the small changes induced from adding a light adapter-
implementation, connecting the JDO-interfaces to the underlying UFO-RDB API and
implementation, is shown in picture 3.
The advancements in the object-part are the introduction of a JDO compliant Java class
enhancer and some changes in the functionality, boundaries and naming of the upper
layers.

In the context of JDO the UFO-RDB adapter can be seen as a ResourceAdapter for
relational DBMS.

Object-Relational Schemes and CCI Graph

For the subject of this paper the new innovative idea of an "object-relational schema" as
also published first in [Pr00] is important and therefore explicated here again in brief.
According to (D1) [Pr00] an object-relational schema (OR-Schema) is definded as
quadruple Sj = < C(Sj), R(Sj), H(Sj), M(Sj) > where:

- C(Sj) = {c1j, …, cnj} is a finite set of persistent capable classes; forming the first half
of the object schema part of the object-relational schema;

- R(Sj) = {r1j, …, rpj} is a finite set of tables; forming the relational schema part of the
object-relational schema;

- H(Sj) = {h1j, …, hqj} is a finite set of hierarchy descriptors; forming the other half of
the object schema part of the object-relational schema;

- M(Sj) = {m1j, …, msj} is a finite set of mapping rules,

with (naturally) C(Sj) ∩R(Sj) ∩ H(Sj) ∩ M(Sj) = ∅ .

5 JDBC stand for Java Data Base Connectivity and is an API and implemented mechanism for dynamic
relational database access included in the Java 2 Plattform Standard Edition

As already done informally in [Pr00] there can be used several graphs6 in association
with (D1) to describe the structure securely on a mathematical stable basis. The one
graph most important for an exact understanding of the type-mapping described in the
next section is the directed complex class-interconnection graph as defined in the
following:

(D3) A directed complex class-interconnection graph for an OR-Schema Sj is a triple

 CCIG(Sj) = (Cc(Sj), Me(Sj), vcSj) where:

- Cc(Sj) = {Cc1j, …, Ccnj} is a finite set of nodes given by the set of persistent capable
classes; from the object schema part of the object-relational schema Sj ;

- Me(Sj) = {m1j, …, msj} is a finite set of edges given by the subset of complex
mapping rules of an object-relational schema Sj;

- vcSj is the (interconnection) function which does map the edges in Me onto
orderend pairs out of Cc .

Note that this directed CCI Gaph as defined here is on a high abstraction level (or seen
from the other end: not very fine-grained) and is intended only to be a means to
demonstrate the principles. It does not contain explicit informations about complex
attribute names, primitive types, inheritance or references.

6 XML persistency concerns

In this section mapping concerns and strategies are treated in general on an abstract
level. After this is done, details of how an implementation looks like are given, in the
next section.

XML persistency options

One of the fundamental decisions which have to be made, when persistent storage of
XML documents valid under a XML-Schema in a database is required, is: which kind of
database to use? The answer depends on the objectives of the designed application or
informationsystem.
A specialized XML-database like Tamino[Ta03] seems to be the best choice in case that
no mapping should be used and highest possible performance is required. The
disadvantages are it`s proprietarity, it`s licensing-costs and the low persitent data
portability.
If data-portability ist the most important aspect a mapping to relational structures
probably would be the best choice, because relational database mgmt systems are the
most widespread used DBMS. The disadvantage of this approach is the conceptual gap
between the XML-Schema structure and relational data-structures. This would require a
very mighty mapping-tool consuming probably huge efforts to develop and contains the
danger to be very proprietary again because there is no standard or guideline on how to

6 There is a large amount of literatur on graph-theory also in the english language. In this paper [Mu87] is used
as reference.

do this correctly. Therefore this approach seems to be possible but impractically. (at least
at the moment)
Therefore in this paper a third alternative is proposed for XML-schema structures to
relational structures mapping by using an indirection through object-oriented structures
in the middle. This approach is corroborated by the following advantages:

- First of all it appears natural, because when recalling the XML-schema typing

system introduced in section 2 this looks very simmilar to ideas from object-
oriented programming languages and therefore should be mutuable mappable.

- Further all major relational database management system vendors introduced object-
features into their products guided by the SQL99-standard[ref needs to be inserted].

- And last but not least another advantage of this approach is that good concepts and
mature implementations exists for object-relational mapping. For example the UFO-
RDB adapter addressed in the previous section.

Fortunately the major part of the remaining XML-Schema to java-object-model mapping
is done already by the JAXB Binding Framework. Therefore the remainder of this
section will focus on the additional conceptual mechanisms neccessary for storing and
retrieving the created java-objects, which contains the XML documents, with the UFX-R
and UFO-R database adapters.

Adding XML persistent document identity (XPDI)

As explained already in section 4 an instanciated persistence capable object-structure (of
arbitrary depth and complexity) always is assigned with and identified by a persistent
object identifier. If a XML document is transformed into such object-structure, by means
of unmarshalling of a JAXB implementation, it also can be identified by such POID
when stored in a object-datastore. Later an application can retrieve an instanciated
object-structure - containing the document - again using the assigned POID for
manipuation or any other use.
But there is a need to lift the persistent identifier from the object level also up to the
instance level of XML documents to enable any – possibly remote and distributed over a
network, e.g. another webservice – application to identify a specific XML document by
its unique id. For example an invoice would normally bear such unique identity.
Therefore the insertion of a corresponding XML persistency document identity (XPDI)
structure is proposed here. The XPDI is included automatically into every instance of a
XML document by means of implicit including a XPDI structure into every used XML-
Schema. The small identity-structure XML-Schema always included corresponds to the
used POID structure and looks like:

 <?xml version”1.0” encoding=”UTF-8”?>
 <xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema” elementFormDefault=“qualified“>
 <xsd:element name=“XPDI“ type=“XPDIstructure“>
 <xsd:complexType name=“XPDIstructure“>
 <xsd:attribute name=”id” use=”required” type=”xsd:integer” />
 <xsd:attribute name=”typeName” use=”required” type=”xsd:string” />
 <xsd:attribute name=”segment” use=”required” type=”xsd:string” />
 </xsd:compexType>
 </xsd:schema>

As you can see the complex type XPDIstructure does contain only attributes of primitive
types specified in the XML-Schema language. These attributes are mapped onto java-
class properties (i.e. attributes) in an class named XPDIstructure according to the JAXB
specification and will then be stored/retrieved also as primitive typed class attributes by
an JDO implementation (i.e. UFX-RDB with UFO-RDB) the same way as the rest of the
document content. The content of the XPDI structure is set according to the content of
the POIDs used and reverse by the UFX-RDB adapter during retrieval and storage of
documents.
The inclusion of this identity structure XML-Schema is somewhat “instrusive” but
should be acceptabel, expecting that using applications will ignore all additional parts of
the resulting extended XML documents which they don’t use. Ignoring is the standard
behaviour know from other programming-area domains. And in the end this inclusion
can be replaced and/or complemented by other identity handling mechanisms if wanted.

Mapping of XML-Schema strucures to OR-Schema structures

An instance of a XML document becomes a root based tree of object-instances after
unmarshalling through a JAXB implementation. In doing so each of the interconnected
object-instances fulfills either the content or element interface. The root of the object-
instance-tree is an object representing the document itself. The same is true on the
object-schema(i.e. class) level: the used classes - created from a JAXB implementation -
for a XML document which validates against a XML-Schema are forming a root based
tree. These classes forming the physical7 object-model for the set of XML documents
validating against a XML-Schema XSj can be seen as a directed XML-Schema graph as
defined in the following:

(D4) A directed XML-Schema graph for a XML-Schema XSj is a triple

 XSG(Sj) = (Xc(XSj), Xe(XSj), vcXSj) where:

- Xc(XSj) = {Xc1j, …, Xcnj} is a finite set of nodes given by the set of created classes
from a JAXB implemention for a XML-Schema XSj ;

- Xe(Sj) = {m1j, …, msj} is a finite set of edges given by the subset of complex class
relationships within the set of created classes from a JAXB implemention for a
XML-Schema XSj

- vxSj is the (interconnection) function which does map the edges in Xe onto
orderend pairs out of Xc .

Informally it should be clear that a XSG can be “mapped” to a CCIG as given in (D3).
More exactly the graphs defined (D3) and (D4) are isomorph. They can be “mapped” to
each other by means of an XML2Object Isomorphism :

(D5) (hc , hm) with hc : Xc(XSj) ? Cc(Sj) and hm : Xe(Sj) ? Me(Sj) and the property
vx(m) = (Xcp, Xcq) ? vc(hm(m)) = (hc(Xcp), hc(Xcq)) .

7 In cotradiction to the more logical mapping to the content and element interfaces

XML-Schema

Document

Classes

Objects

compile

unmarshal

marshal

instanceoffollows

OR-Schema

relational
rows

store

retrieve

follows

generatedfrom

enhanced

picture 2 – extended roundtrip

Given this mapping from XML-Schema structures onto the object-part of an OR-Schema
the required other parts of the OR-Schema can be generated by an object-relational
mapping algorithm. Three of such standard algorithms according to [St99] are
implemented already in the UFO-RDB adapter. The resulting extension of picture 1 is
shown in picture 2.

7 The UF X-R DataBase adapter

The Universal Free XML-Relational DataBase adapter (UFX-RDB) is the prototypical
implementation of a XML storage adapter for relational databases using and incorporting
in detail the ideas and concepts indicated in the previous sections.
In the context of JAXB the UFX-RDB adapter can be seen as a JAXB implementation
enriched with facets required for persistency. Further the UFX-RDB is based on the light
JDO branch of the UFO-RDB adapter.

Extensions and architecture

Simplified, the Universal Free XML–Relational DataBase adapter (UFX-RDB) is an
addition XML-specific layer on top of the UFO-RDB adapter. It reuses all features of the

object-relational mapping mechanisms inside the UFO-RDB adapter and adds specific
XML-functionality and an API extension specific for storing and retrieving XML-
documents as you can see from picture 3.

Common Storage-Systems
(RDBMS‘s, EIS‘s, FileSystem‘s etc.)

Persistent Store Adapters

(Object-Relational) Object Factories

Internal Wrapper Layer

Class and Identity Mapper (StateMgr)

Basic Interface (JDBC, SQLJ, ODBC ...)

Virtual Table Interface

Object-Relational Schema

Application Programming Interface

Persistent Capable Interface

Resource Adapter Interface

PO Modeler
&

Mapping
Algorithms

External Class & Id
Representation

Class
Analyser &
Enhancer

Internal Object Interface

External Access LayerUFX-RDB JDO adapter

picture 3 - UFO-RDB and UFX-RDB architecture

The shown archtitectur is very suitable for storing JAXB-unmarshalled XML documents
because – as mentioned in section 3 – a JAXB-stye binding compiler always creates
ObjectFactories for compiled XML-Schemas. This concept matches with the existing
Objects-Factory concept used in the UF(O/X)-RDB architecture. This way enabling a
smooth integration while preserving flexibility of customization if needed.

Interfaces

Because of the fact, that the UFX-RDB adapter stores and retrieves XML-documents in
the form of instanciated object-structures, the application programming interface of the
UFX-RDB adapter looks very simmilar to the one of the pure UFO-RDB adapter. The
main API is (again) DataBase but containing now methods for storing, retrieving,
updating, name-assigning, querying etc XML documents. Herein special methods for
retrieving and handling of a XPDI structure from a document are included. Further a
SchemaManager is introduced newly to assist the transformation of a XML-Schema into
the required OR-Schema structures.

8 Conclusion and Outlook

In this paper a short view on the basic ideas and concepts of XML-Schema, the Java
architecture for XML Binding, Java Data Objects, the Universal Free Object-Relational
DataBase adapter and the idea of a conceptual Object-Relational Schema was given.
After this, persistency concerns for XML data were mentioned in general and an
isomorphism was definded between the graph of the JAXB-created object-representation
of basic XML-Schema components and an graph of the object part of OR-Schema
components to show the possibility of mapping. Finally the extended UFX-RDB adapter
architecture and interfaces was shown.
While the defined graphs and the given isomorphism shows the fundamentals of a
mathematical founded mapping, the given descripitions are very concise because of
limited space in this paper. It would be of interrest to extend the given structures to
include more details.

References

[AM95] Atkinson, M.P. and Morrison, R.: Orthogonally Persistent Object Systems. VLDB

Journal, 4(3), 1995, pp319-401
[Bi01] Birbeck, M. et. al.: Professional XML 2nd Edition. Wrox Press Ltd, Birmingham,

UK, 2002. p. 197
[Co90] E.F. Codd: The relational model for database management. version 2. Addison-

Wesley Pub. Inc, 1990
[JAX02] The Java Architecture for XML Binding (JAXB); Proposed Final, V 0.90, December

2002, Editors: Joseph Fialli. Sekhar Vajjhala, Sun Microsystems Inc., Santa Clara,
USA, 2002.

[JDO02] JavaDataObjectExpertGroup; Specification Lead: Craig Russel: Java Data Objects.
Version 1.0 Sun Microsystems Inc., Palo Alto, U.S.A., 2002.

[Mu87] Müller, H.: Diskrete Algebraische Strukturen. Arbeitsberichte des Instituts für
Mathematische Maschinen und Datenverarbeitung, Band 20, Nr. 5, Erlangen, 1987.

[Pr99] Priese, Claus P. A Flexible Type-Extensible Object-Relational DataBase Wrapper-
Architecture. Internal Report 09/99 Univ. of Frankfurt, presented at the “Workshop
on Java and Databases” at OOPSLA99, Denver

[Pr00] Priese, Claus P. Architecture of a reusable and extensible DataBase-Wrapper with
rule-set based object-relational schemes. in journal “L'objet” Vol.6 issue N40,
Hermes Science Publishing Ltd, Oxford, 2000

[Pr02] This journal-issue is republished in 2002 as book by Hermes Penton Science, 2002
with ISBN 1903996155

[Pr03a] And this journal-issue is republished again in 2003 as book from Stylus Publishing
[St99] Michael Stonebraker, Paul Brown: Object-Relational DBMSs. Morgan Kaufmann

Publ. Inc., San Francisco, CA, USA, 1999.
[Ta03] “Tamino” is a commercial product from Software AG, Darmstadt Germany. For the

actual version and other resources see http://www.tamino.com , 2003.
[XML00] Tim Bray, Jean Paoli, C.M.Sperberg-McQueen: W3C Extensible Markup Language

(XML) 1.0 (Second Edition). http://www.w3.org/TR/REC-xml , 2000.
[XSD-P0-01] Schema Part 0: Primer, W3C Recommendation 2 May 2001 Available at

http://www.w3.org/TR/xmlschema-0/
[XSD-P1-01] XML Schema Part 1: Structures, W3C Recommendation 2 May 2001 Available at

http://www.w3.org/TR/xmlschema-1/
[XSD-P2-01] XML Schema Part 2: Datatypes, W3C Recommendation 2 May 2001 Available at

http://www.w3.org/TR/xmlschema-2/

